
Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 1

CH. 3
STACKS AND QUEUES

EECS 204002
Data Structures 資料結構
Prof. REN-SONG TSAY 蔡仁松教授
NTHU

1© Ren-Song Tsay, NTHU, Taiwan2018/9/11

2018/9/11 © Ren-Song Tsay, NTHU, Taiwan 2

3.2

The Stack
Abstract Data

Type

Stack

 A stack is an ordered list in which

insertions (or called additions or pushes)

and deletions (or called removals or

pops) are made at one end called the

top.

 Operate in Last-In-First-Out (LIFO)

order

3

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 2

Stack Operations

 Insert a new element into stack

4

Insert

A

A top

B

A

Insert

B

top

C

B

A

Insert

C

top

empty

Stack Operations

 Delete an element from stack

5

Delete

A top

B

A

Delete

top

C

B

A

top

Stack: ADT
template < class T >
class Stack // A finite ordered list
{
public:

// Constructor
Stack (int stackCapacity = 10);

// Check if the stack is empty
bool IsEmpty () const;

// Return the top element
T& Top () const;

// Insert a new element at top
void Push (const T& item);

// Delete one element from top
void Pop ();

private:
T* stack;
int top; // init. value = -1
int capacity;

}; 6

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 3

Stack Operations: Push & Pop

template < class T >

void Stack < T >::Push (const T& x)

{ // Add x to stack

if(top == capacity – 1)

{

ChangeSize1D(stack, capacity, 2*capacity);

capacity *= 2;

}

stack [++top] = x;

}

template < class T >

void Stack < T >::Pop ()

{ // Delete top element from stack

if(IsEmpty()) throw “Stack is empty. Cannot delete.”;

stack [top--].~T(); // Delete the element

}

7

Stack Application

 Function recursion

 System stack

◦ Used in the run time to

process recursive

function calls

◦ Store the return

addresses of previous

outer procedures

8

main PROC

 .

 .

 call Sub1

 exit

main ENDP

Sub1 PROC

 .

 .

 call Sub2

 ret

Sub1 ENDP

Sub2 PROC

 .

 .

 call Sub3

 ret

Sub2 ENDP

Sub3 PROC

 .

 .

 ret

Sub3 ENDP

By the time

Sub3 is

called, the

stack

contains all

three return

addresses:

Return address to Sub2

Return address to Sub1

Return address to main

System Stack

