
Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 1

CH. 3
STACKS AND QUEUES

EECS 204002
Data Structures 資料結構
Prof. REN-SONG TSAY 蔡仁松教授
NTHU

1© Ren-Song Tsay, NTHU, Taiwan2018/9/11

2018/9/11 © Ren-Song Tsay, NTHU, Taiwan 2

3.2

The Stack
Abstract Data

Type

Stack

 A stack is an ordered list in which

insertions (or called additions or pushes)

and deletions (or called removals or

pops) are made at one end called the

top.

 Operate in Last-In-First-Out (LIFO)

order

3

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 2

Stack Operations

 Insert a new element into stack

4

Insert

A

A top

B

A

Insert

B

top

C

B

A

Insert

C

top

empty

Stack Operations

 Delete an element from stack

5

Delete

A top

B

A

Delete

top

C

B

A

top

Stack: ADT
template < class T >
class Stack // A finite ordered list
{
public:

// Constructor
Stack (int stackCapacity = 10);

// Check if the stack is empty
bool IsEmpty () const;

// Return the top element
T& Top () const;

// Insert a new element at top
void Push (const T& item);

// Delete one element from top
void Pop ();

private:
T* stack;
int top; // init. value = -1
int capacity;

}; 6

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 3

Stack Operations: Push & Pop

template < class T >

void Stack < T >::Push (const T& x)

{ // Add x to stack

if(top == capacity – 1)

{

ChangeSize1D(stack, capacity, 2*capacity);

capacity *= 2;

}

stack [++top] = x;

}

template < class T >

void Stack < T >::Pop ()

{ // Delete top element from stack

if(IsEmpty()) throw “Stack is empty. Cannot delete.”;

stack [top--].~T(); // Delete the element

}

7

Stack Application

 Function recursion

 System stack

◦ Used in the run time to

process recursive

function calls

◦ Store the return

addresses of previous

outer procedures

8

main PROC

 .

 .

 call Sub1

 exit

main ENDP

Sub1 PROC

 .

 .

 call Sub2

 ret

Sub1 ENDP

Sub2 PROC

 .

 .

 call Sub3

 ret

Sub2 ENDP

Sub3 PROC

 .

 .

 ret

Sub3 ENDP

By the time

Sub3 is

called, the

stack

contains all

three return

addresses:

Return address to Sub2

Return address to Sub1

Return address to main

System Stack

